Thanks to our Sponsors!

Problem 1

In a room with 300 people with only Americans and Canadians, there are 200 Americans and 230 Canadians. Determine the number of non-American Canadians.

Problem 2

Four distinct integers from 1 to 9 are written on a piece of paper. Given that the first two numbers multiply to 24 and the third and fourth numbers multiply to 72 , find the sum of the digits written.

Problem 3

The second largest divisor of a number is 39 , and its third smallest divisor is 3 . What is the number?

Problem 4

Find the three digit number with units digit 3 which is the average of a power of 17 and a power of 23.

Problem 5

Point E is chosen to the left of line $B C$ in rectangle $A B C D$ such that triangles $\triangle E B C$ and $\triangle E A D$ have areas 3 and 12, respectively. Find the area of rectangle $A B C D$.

Problem 6

Find the unique 3 -digit multiple of 13 whose digits sum to 23 .

Problem 7

Two regular hexagons are inscribed inside a rectangle as shown. The smaller hexagon has area 1. Find the area of the larger hexagon.

Problem 8

Let a, b, c, d be nonzero digits such that

$$
\underline{a b c}+\underline{a c b}+\underline{a b d}=\underline{d d d}
$$

Find the product of all possible values of $a+b+c+d$.

Problem 9

Given that there are exactly 15 square numbers between 36 a and 49 a, inclusive, find the greatest possible value of a.

Problem 10

Find the number of pairs of nonnegative real numbers (a, b) that exist so that $a^{2}+b^{2}=250000$ and $a+b$ is an integer.

Problem 11

Starting from $(0,0)$, a bug wants to travel to $(10,0)$ via lattice points. However, he cannot travel to coordinates that have an odd sum. Given that he can jump for a travel for a maximum distance of 1.5 units, determine the number of possible ways he can reach his destination using paths with the least possible distance.

Problem 12

Let $A B C D$ be a quadrilateral with $\angle A=60, \angle C=120, A C=6$, and $B C=C D=4$. Find the square of the area of triangle $A B D$.

Problem 13

How many 4 digit numbers exist so that the sum of the first two digits is divisible by 3 , the sum of the second and third digits is divisible by 2 and the sum of the third and fourth digit is divisible by 5 ?

Problem 14

Trapezoid $A B C D$ has diagonals of length 6 and 8 . It is given that the distance between the midpoints of $A B$ and $C D$ is the same as the distance between the midpoints of $B C$ and $D A$. Find the area of $A B C D$.

Problem 15

Suppose there exist quadratic polynomials $P(x), Q(x)$, and $P(x)+Q(x)$ with vertices of (4, 5), $(9,15),(8,80)$ respectively. Find $P(2)+Q(3)$.

